Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37958934

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder and the main cause of dementia which is characterized by a progressive cognitive decline that severely interferes with daily activities of personal life. At a pathological level, it is characterized by the accumulation of abnormal protein structures in the brain-ß-amyloid (Aß) plaques and Tau tangles-which interfere with communication between neurons and lead to their dysfunction and death. In recent years, research on AD has highlighted the critical involvement of mitochondria-the primary energy suppliers for our cells-in the onset and progression of the disease, since mitochondrial bioenergetic deficits precede the beginning of the disease and mitochondria are very sensitive to Aß toxicity. On the other hand, if it is true that the accumulation of Aß in the mitochondria leads to mitochondrial malfunctions, it is otherwise proven that mitochondrial dysfunction, through the generation of reactive oxygen species, causes an increase in Aß production, by initiating a vicious cycle: there is therefore a bidirectional relationship between Aß aggregation and mitochondrial dysfunction. Here, we focus on the latest news-but also on neglected evidence from the past-concerning the interplay between dysfunctional mitochondrial complex I, oxidative stress, and Aß, in order to understand how their interplay is implicated in the pathogenesis of the disease.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Mitochondria/metabolism
2.
Int J Mol Sci ; 24(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37298634

ABSTRACT

Beyond deficits in hippocampal-dependent episodic memory, Alzheimer's Disease (AD) features sensory impairment in visual cognition consistent with extensive neuropathology in the retina. 12A12 is a monoclonal cleavage specific antibody (mAb) that in vivo selectively neutralizes the AD-relevant, harmful N-terminal 20-22 kDa tau fragment(s) (i.e., NH2htau) without affecting the full-length normal protein. When systemically injected into the Tg2576 mouse model overexpressing a mutant form of Amyloid Precursor Protein (APP), APPK670/671L linked to early onset familial AD, this conformation-specific tau mAb successfully reduces the NH2htau accumulating both in their brain and retina and, thus, markedly alleviates the phenotype-associated signs. By means of a combined biochemical and metabolic experimental approach, we report that 12A12mAb downregulates the steady state expression levels of APP and Beta-Secretase 1 (BACE-1) and, thus, limits the Amyloid beta (Aß) production both in the hippocampus and retina from this AD animal model. The local, antibody-mediated anti-amyloidogenic action is paralleled in vivo by coordinated modulation of the endocytic (BIN1, RIN3) and bioenergetic (glycolysis and L-Lactate) pathways. These findings indicate for the first time that similar molecular and metabolic retino-cerebral pathways are modulated in a coordinated fashion in response to 12A12mAb treatment to tackle the neurosensorial Aß accumulation in AD neurodegeneration.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Energy Metabolism , Disease Models, Animal , Amyloid Precursor Protein Secretases/metabolism , tau Proteins/metabolism , Mice, Transgenic
3.
Curr Issues Mol Biol ; 45(5): 4451-4479, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37232752

ABSTRACT

Mitochondria have made a long evolutionary path from ancient bacteria immigrants within the eukaryotic cell to become key players for the cell, assuming crucial multitasking skills critical for human health and disease. Traditionally identified as the powerhouses of eukaryotic cells due to their central role in energy metabolism, these chemiosmotic machines that synthesize ATP are known as the only maternally inherited organelles with their own genome, where mutations can cause diseases, opening up the field of mitochondrial medicine. More recently, the omics era has highlighted mitochondria as biosynthetic and signaling organelles influencing the behaviors of cells and organisms, making mitochondria the most studied organelles in the biomedical sciences. In this review, we will especially focus on certain 'novelties' in mitochondrial biology "left in the shadows" because, although they have been discovered for some time, they are still not taken with due consideration. We will focus on certain particularities of these organelles, for example, those relating to their metabolism and energy efficiency. In particular, some of their functions that reflect the type of cell in which they reside will be critically discussed, for example, the role of some carriers that are strictly functional to the typical metabolism of the cell or to the tissue specialization. Furthermore, some diseases in whose pathogenesis, surprisingly, mitochondria are involved will be mentioned.

4.
J Clin Med ; 11(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36431219

ABSTRACT

Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, is characterized by memory and cognitive impairment and by the accumulation in the brain of abnormal proteins, more precisely beta-amyloid (ß-amyloid or Aß) and Tau proteins. Studies aimed at researching pharmacological treatments against AD have focused precisely on molecules capable, in one way or another, of preventing/eliminating the accumulations of the aforementioned proteins. Unfortunately, more than 100 years after the discovery of the disease, there is still no effective therapy in modifying the biology behind AD and nipping the disease in the bud. This state of affairs has made neuroscientists suspicious, so much so that for several years the idea has gained ground that AD is not a direct neuropathological consequence taking place downstream of the deposition of the two toxic proteins, but rather a multifactorial disease, including mitochondrial dysfunction as an early event in the pathogenesis of AD, occurring even before clinical symptoms. This is the reason why the search for pharmacological agents capable of normalizing the functioning of these subcellular organelles of vital importance for nerve cells is certainly to be considered a promising approach to the design of effective neuroprotective drugs aimed at preserving this organelle to arrest or delay the progression of the disease. Here, our intent is to provide an updated overview of the mitochondrial alterations related to this disorder and of the therapeutic strategies (both natural and synthetic) targeting mitochondrial dysfunction.

5.
Int J Mol Sci ; 23(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35887070

ABSTRACT

Alzheimer's disease (AD), certainly the most widespread proteinopathy, has as classical neuropathological hallmarks, two groups of protein aggregates: senile plaques and neurofibrillary tangles. However, the research interest is rapidly gaining ground in a better understanding of other pathological features, first, of all the mitochondrial dysfunctions. Several pieces of evidence support the hypothesis that abnormal mitochondrial function may trigger aberrant processing of amyloid progenitor protein or tau and thus neurodegeneration. Here, our aim is to emphasize the role played by two 'bioenergetic' proteins inserted in the mitochondrial membranes, inner and outer, respectively, that is, the adenine nucleotide translocator (ANT) and the voltage-dependent anion channel (VDAC), in the progression of AD. To perform this, we will magnify the ANT and VDAC defects, which are measurable hallmarks of mitochondrial dysfunction, and collect all the existing information on their interaction with toxic Alzheimer's proteins. The pathological convergence of tau and amyloid ß-peptide (Aß) on mitochondria may finally explain why the therapeutic strategies used against the toxic forms of Aß or tau have not given promising results separately. Furthermore, the crucial role of ANT-1 and VDAC impairment in the onset/progression of AD opens a window for new therapeutic strategies aimed at preserving/improving mitochondrial function, which is suspected to be the driving force leading to plaque and tangle deposition in AD.


Subject(s)
Alzheimer Disease , Adenine Nucleotides/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Humans , Mitochondria/metabolism , Voltage-Dependent Anion Channels/metabolism , tau Proteins/metabolism
6.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35628362

ABSTRACT

Mitochondria, traditionally identified as the powerhouses of eukaryotic cells, constitute a dynamic network of signaling platforms with multifaceted key roles in cell metabolism, proliferation and survival [...].


Subject(s)
Energy Metabolism , Mitochondria , Mitochondria/metabolism , Signal Transduction
7.
Int J Mol Sci ; 22(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34830036

ABSTRACT

Tau cleavage plays a crucial role in the onset and progression of Alzheimer's Disease (AD), a widespread neurodegenerative disease whose incidence is expected to increase in the next years. While genetic and familial forms of AD (fAD) occurring early in life represent less than 1%, the sporadic and late-onset ones (sAD) are the most common, with ageing being an important risk factor. Intracerebroventricular (ICV) infusion of streptozotocin (STZ)-a compound used in the systemic induction of diabetes due to its ability to damage the pancreatic ß cells and to induce insulin resistance-mimics in rodents several behavioral, molecular and histopathological hallmarks of sAD, including memory/learning disturbance, amyloid-ß (Aß) accumulation, tau hyperphosphorylation, oxidative stress and brain glucose hypometabolism. We have demonstrated that pathological truncation of tau at its N-terminal domain occurs into hippocampi from two well-established transgenic lines of fAD animal models, such as Tg2576 and 3xTg mice, and that it's in vivo neutralization via intravenous (i.v.) administration of the cleavage-specific anti-tau 12A12 monoclonal antibody (mAb) is strongly neuroprotective. Here, we report the therapeutic efficacy of 12A12mAb in STZ-infused mice after 14 days (short-term immunization, STIR) and 21 days (long-term immunization regimen, LTIR) of i.v. delivery. A virtually complete recovery was detected after three weeks of 12A12mAb immunization in both novel object recognition test (NORT) and object place recognition task (OPRT). Consistently, three weeks of this immunization regimen relieved in hippocampi from ICV-STZ mice the AD-like up-regulation of amyloid precursor protein (APP), the tau hyperphosphorylation and neuroinflammation, likely due to modulation of the PI3K/AKT/GSK3-ß axis and the AMP-activated protein kinase (AMPK) activities. Cerebral oxidative stress, mitochondrial impairment, synaptic and histological alterations occurring in STZ-infused mice were also strongly attenuated by 12A12mAb delivery. These results further strengthen the causal role of N-terminal tau cleavage in AD pathogenesis and indicate that its specific neutralization by non-invasive administration of 12A12mAb can be a therapeutic option for both fAD and sAD patients, as well as for those showing type 2 diabetes as a comorbidity.


Subject(s)
Alzheimer Disease/metabolism , Cognitive Dysfunction/metabolism , Proteolysis , Streptozocin/adverse effects , tau Proteins/metabolism , Alzheimer Disease/chemically induced , Alzheimer Disease/genetics , Animals , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/genetics , Male , Mice , Mice, Transgenic , Streptozocin/pharmacology , tau Proteins/genetics
8.
Int J Mol Sci ; 22(15)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34361078

ABSTRACT

Mitochondria are complex intracellular organelles traditionally identified as the powerhouses of eukaryotic cells due to their central role in bioenergetic metabolism. In recent decades, the growing interest in mitochondria research has revealed that these multifunctional organelles are more than just the cell powerhouses, playing many other key roles as signaling platforms that regulate cell metabolism, proliferation, death and immunological response. As key regulators, mitochondria, when dysfunctional, are involved in the pathogenesis of a wide range of metabolic, neurodegenerative, immune and neoplastic disorders. Far more recently, mitochondria attracted renewed attention from the scientific community for their ability of intercellular translocation that can involve whole mitochondria, mitochondrial genome or other mitochondrial components. The intercellular transport of mitochondria, defined as horizontal mitochondrial transfer, can occur in mammalian cells both in vitro and in vivo, and in physiological and pathological conditions. Mitochondrial transfer can provide an exogenous mitochondrial source, replenishing dysfunctional mitochondria, thereby improving mitochondrial faults or, as in in the case of tumor cells, changing their functional skills and response to chemotherapy. In this review, we will provide an overview of the state of the art of the up-to-date knowledge on intercellular trafficking of mitochondria by discussing its biological relevance, mode and mechanisms underlying the process and its involvement in different pathophysiological contexts, highlighting its therapeutic potential for diseases with mitochondrial dysfunction primarily involved in their pathogenesis.


Subject(s)
Metabolic Diseases/physiopathology , Mitochondria/physiology , Mitochondrial Dynamics , Neoplasms/physiopathology , Neurodegenerative Diseases/physiopathology , Animals , Humans , Metabolic Diseases/therapy , Neoplasms/therapy
9.
Int J Mol Sci ; 22(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34299182

ABSTRACT

Mitochondria are complex intracellular organelles involved in many aspects of cellular life, with a primary role in bioenergy production via oxidative phosphorylation (OXPHOS) [...].


Subject(s)
Mitochondria/metabolism , Mitochondria/pathology , Energy Metabolism , Humans , Oxidative Phosphorylation , Publications , Review Literature as Topic
10.
Int J Mol Sci ; 22(8)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920595

ABSTRACT

The mitochondrial adenine nucleotide translocator (ANT) plays the fundamental role of gatekeeper of cellular energy flow, carrying out the reversible exchange of ADP for ATP across the inner mitochondrial membrane. ADP enters the mitochondria where, through the oxidative phosphorylation process, it is the substrate of Fo-F1 ATP synthase, producing ATP that is dispatched from the mitochondrion to the cytoplasm of the host cell, where it can be used as energy currency for the metabolic needs of the cell that require energy. Long ago, we performed a method that allowed us to monitor the activity of ANT by continuously detecting the ATP gradually produced inside the mitochondria and exported in the extramitochondrial phase in exchange with externally added ADP, under conditions quite close to a physiological state, i.e., when oxidative phosphorylation takes place. More than 30 years after the development of the method, here we aim to put the spotlight on it and to emphasize its versatile applicability in the most varied pathophysiological conditions, reviewing all the studies, in which we were able to observe what really happened in the cell thanks to the use of the "ATP detecting system" allowing the functional activity of the ANT-mediated ADP/ATP exchange to be measured.


Subject(s)
Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial Diseases/genetics , Animals , Energy Metabolism , Humans , Mitochondrial ADP, ATP Translocases/genetics , Mitochondrial Diseases/metabolism
11.
Acta Neuropathol Commun ; 9(1): 38, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33750467

ABSTRACT

Retina and optic nerve are sites of extra-cerebral manifestations of Alzheimer's Disease (AD). Amyloid-ß (Aß) plaques and neurofibrillary tangles of hyperphosphorylated tau protein are detected in eyes from AD patients and transgenic animals in correlation with inflammation, reduction of synapses, visual deficits, loss of retinal cells and nerve fiber. However, neither the pathological relevance of other post-translational tau modifications-such as truncation with generation of toxic fragments-nor the potential neuroprotective action induced by their in vivo clearance have been investigated in the context of AD retinal degeneration. We have recently developed a monoclonal tau antibody (12A12mAb) which selectively targets the neurotoxic 20-22 kDa NH2-derived peptide generated from pathological truncation at the N-terminal domain of tau without cross-reacting with its full-length normal protein. Previous studies have shown that 12A12mAb, when intravenously (i.v.)-injected into 6-month-old Tg2576 animals, markedly improves their AD-like, behavioural and neuropathological syndrome. By taking advantage of this well-established tau-directed immunization regimen, we found that 12A12mAb administration also exerts a beneficial action on biochemical, morphological and metabolic parameters (i.e. APP/Aß processing, tau hyperphosphorylation, neuroinflammation, synaptic proteins, microtubule stability, mitochondria-based energy production, neuronal death) associated with ocular injury in the AD phenotype. These findings prospect translational implications in the AD field by: (1) showing for the first time that cleavage of tau takes part in several pathological changes occurring in vivo in affected retinas and vitreous bodies and that its deleterious effects are successfully antagonized by administration of the specific 12A12mAb; (2) shedding further insights on the tight connections between neurosensory retina and brain, in particular following tau-based immunotherapy. In our view, the parallel response we detected in this preclinical animal model, both in the eye and in the hippocampus, following i.v. 12A12mAb injection opens novel diagnostic and therapeutic avenues for the clinical management of cerebral and extracerebral AD signs in human beings.


Subject(s)
Alzheimer Disease/complications , Immunoglobulins, Intravenous/immunology , Immunoglobulins, Intravenous/therapeutic use , Retinal Degeneration/drug therapy , Retinal Degeneration/etiology , tau Proteins/chemistry , tau Proteins/immunology , Amyloid beta-Peptides , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Antibodies/immunology , Antibodies/isolation & purification , Antibodies/therapeutic use , Disease Models, Animal , Female , Immunoglobulins, Intravenous/administration & dosage , Mice , Mice, Transgenic , Mitochondria/pathology , Neurons , Plaque, Amyloid/pathology , Retina/pathology , Retinal Degeneration/pathology , Synapses/metabolism
12.
Int J Mol Sci ; 22(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33478087

ABSTRACT

The redox states of NAD and NADP are linked to each other in the mitochondria thanks to the enzyme nicotinamide nucleotide transhydrogenase (NNT) which, by utilizing the mitochondrial membrane potential (mΔΨ), catalyzes the transfer of redox potential between these two coenzymes, reducing one at the expense of the oxidation of the other. In order to define NNT reaction direction in CF cells, NNT activity under different redox states of cell has been investigated. Using spectrophotometric and western blotting techniques, the presence, abundance and activity level of NNT were determined. In parallel, the levels of NADPH and NADH as well as of mitochondrial and cellular ROS were also quantified. CF cells showed a 70% increase in protein expression compared to the Wt sample; however, regarding NNT activity, it was surprisingly lower in CF cells than healthy cells (about 30%). The cellular redox state, together with the low mΔΨ, pushes to drive NNT reverse reaction, at the expense of its antioxidant potential, thus consuming NADPH to support NADH production. At the same time, the reduced NNT activity prevents the NADH, produced by the reaction, from causing an explosion of ROS by the damaged respiratory chain, in accordance with the reduced level of mitochondrial ROS in NNT-loss cells. This new information on cellular bioenergetics represents an important building block for further understanding the molecular mechanisms responsible for cellular dysfunction in cystic fibrosis.


Subject(s)
Cystic Fibrosis/metabolism , NADP Transhydrogenases/metabolism , Catalysis , Cells, Cultured , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Energy Metabolism/genetics , Humans , Membrane Potential, Mitochondrial/physiology , Metabolic Networks and Pathways/genetics , Mitochondria/metabolism , NAD/metabolism , NADP/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism
13.
Cells ; 9(11)2020 10 23.
Article in English | MEDLINE | ID: mdl-33114170

ABSTRACT

A new epoch is emerging with intense research on nutraceuticals, i.e., "food or food product that provides medical or health benefits including the prevention and treatment of diseases", such as Alzheimer's disease. Nutraceuticals act at different biochemical and metabolic levels and much evidence shows their neuroprotective effects; in particular, they are able to provide protection against mitochondrial damage, oxidative stress, toxicity of ß-amyloid and Tau and cell death. They have been shown to influence the composition of the intestinal microbiota significantly contributing to the discovery that differential microorganisms composition is associated with the formation and aggregation of cerebral toxic proteins. Further, the routes of interaction between epigenetic mechanisms and the microbiota-gut-brain axis have been elucidated, thus establishing a modulatory role of diet-induced epigenetic changes of gut microbiota in shaping the brain. This review examines recent scientific literature addressing the beneficial effects of some natural products for which mechanistic evidence to prevent or slowdown AD are available. Even if the road is still long, the results are already exceptional.


Subject(s)
Alzheimer Disease/metabolism , Functional Food , Alzheimer Disease/etiology , Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , Animals , Biological Products/pharmacology , Biomarkers , Brain/drug effects , Brain/metabolism , Brain/pathology , DNA Methylation , Diet Therapy , Dietary Supplements , Disease Management , Disease Susceptibility , Gastrointestinal Microbiome/drug effects , Gene Expression Regulation/drug effects , Humans , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Neuroprotective Agents/pharmacology
14.
J Clin Med ; 8(11)2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31698802

ABSTRACT

Cystic fibrosis (CF) occurs when the cystic fibrosis transmembrane conductance regulator (CFTR) protein is not synthetized and folded correctly. The CFTR protein helps to maintain the balance of salt and water on many body surfaces, such as the lung surface. When the protein is not working correctly, chloride becomes trapped in cells, then water cannot hydrate the cellular surface and the mucus covering the cells becomes thick and sticky. Furthermore, a defective CFTR appears to produce a redox imbalance in epithelial cells and extracellular fluids and to cause an abnormal generation of reactive oxygen species: as a consequence, oxidative stress has been implicated as a causative factor in the aetiology of the process. Moreover, massive evidences show that defective CFTR gives rise to extracellular GSH level decrease and elevated glucose concentrations in airway surface liquid (ASL), thus encouraging lung infection by pathogens in the CF advancement. Recent research in progress aims to rediscover a possible role of mitochondria in CF. Here the latest new and recent studies on mitochondrial bioenergetics are collected. Surprisingly, they have enabled us to ascertain that mitochondria have a leading role in opposing the high ASL glucose level as well as oxidative stress in CF.

15.
Ageing Res Rev ; 53: 100915, 2019 08.
Article in English | MEDLINE | ID: mdl-31173890

ABSTRACT

Both cancer and Alzheimer's disease (AD) are emerging as metabolic diseases in which aberrant/dysregulated glucose metabolism and bioenergetics occur, and play a key role in disease progression. Interestingly, an enhancement of glucose uptake, glycolysis and pentose phosphate pathway occurs in both cancer cells and amyloid-ß-resistant neurons in the early phase of AD. However, this metabolic shift has its adverse effects. One of them is the increase in methylglyoxal production, a physiological cytotoxic by-product of glucose catabolism. Methylglyoxal is mainly detoxified via cytosolic glyoxalase route comprising glyoxalase 1 and glyoxalase 2 with the production of S-D-lactoylglutathione and D-lactate as intermediate and end-product, respectively. Due to the existence of mitochondrial carriers and intramitochondrial glyoxalase 2 and D-lactate dehydrogenase, the transport and metabolism of both S-D-lactoylglutathione and D-lactate in mitochondria can contribute to methylglyoxal elimination, cellular antioxidant power and energy production. In this review, it is supposed that the different ability of cancer cells and AD neurons to metabolize methylglyoxal, S-D-lactoylglutathione and D-lactate scores cell fate, therefore being at the very crossroad of the "eternal youth" of cancer and the "premature death" of AD neurons. Understanding of these processes would help to elaborate novel metabolism-based therapies for cancer and AD treatment.


Subject(s)
Alzheimer Disease/metabolism , Glutathione/analogs & derivatives , Lactic Acid/metabolism , Neoplasms/metabolism , Pyruvaldehyde/metabolism , Aging, Premature , Animals , Energy Metabolism , Glutathione/metabolism , Glycolysis , Humans , Lactoylglutathione Lyase/metabolism , Pyruvaldehyde/toxicity , Thiolester Hydrolases/metabolism
16.
J Bioenerg Biomembr ; 51(3): 203-218, 2019 06.
Article in English | MEDLINE | ID: mdl-31030390

ABSTRACT

Direct and indirect evidences show that elevated glucose concentrations in airway surface liquid (ASL) promote lung infection by pathogens, playing a role in the progression of the Cystic Fibrosis (CF) disease. The joint action of transporter/s for glucose and of the cellular enzymes is essential in order to try to lower ASL glucose level. Inside the cell, the glycolysis and the pentose phosphate pathway (PPP) compete for the utilization of glucose-6-phosphate (G6P), the product in which glucose, after entry within the cell and phosphorylation, is trapped. The study aims to clarify whether, modulating the activity of enzymatic proteins and/or the level of metabolites/cofactors, involved in intracellular glucose utilization, a lowering of the extracellular glucose level in CF occurs. Biochemical approaches have enabled us to understand i) how G6P is shunted between glycolysis and PPP and ii) that mitochondria, more than enzymes/cofactors participating to the two cell glucose utilization pathways, are protagonists of the scene in counteracting the high ASL glucose level as well as oxidative stress in CF.


Subject(s)
Cystic Fibrosis/metabolism , Glucose-6-Phosphate/metabolism , Glucose/metabolism , Mitochondria/metabolism , Oxidative Stress , Pentose Phosphate Pathway , Cell Line, Tumor , Cystic Fibrosis/pathology , Humans , Mitochondria/pathology
17.
Cell Mol Life Sci ; 75(15): 2763-2776, 2018 08.
Article in English | MEDLINE | ID: mdl-29728715

ABSTRACT

Glucose avidity, high glycolysis and L-lactate production, regardless of oxygen availability, are the main traits of cancer metabolic reprogramming. The idea that mitochondria are dysfunctional in cancer, thus causing a glycolysis increase for ATP production and L-lactate accumulation as a dead-end product of glucose catabolism, has oriented cancer research for many years. However, it was shown that mitochondrial metabolism is essential for cancer cell proliferation and tumorigenesis and that L-lactate is a fundamental energy substrate with tumor growth-promoting and signaling capabilities. Nevertheless, the known ability of mitochondria to take up and oxidize L-lactate has remained ignored by cancer research. Beginning with a brief overview of the metabolic changes occurring in cancer, we review the present knowledge of L-lactate formation, transport, and intracellular oxidation and underline the possible role of L-lactate metabolism as energetic, signaling and anabolic support for cancer cell proliferation. These unexplored aspects of cancer biochemistry might be exploited for therapeutic benefit.


Subject(s)
Energy Metabolism , Lactic Acid/metabolism , Mitochondria/metabolism , Neoplasms/metabolism , Adenosine Triphosphate/metabolism , Cell Proliferation , Glycolysis , Humans , Models, Biological , Neoplasms/pathology , Oxidative Phosphorylation
18.
Oncotarget ; 8(39): 64745-64778, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-29029390

ABSTRACT

The largest part of tau secreted from AD nerve terminals and released in cerebral spinal fluid (CSF) is C-terminally truncated, soluble and unaggregated supporting potential extracellular role(s) of NH2 -derived fragments of protein on synaptic dysfunction underlying neurodegenerative tauopathies, including Alzheimer's disease (AD). Here we show that sub-toxic doses of extracellular-applied human NH2 tau 26-44 (aka NH 2 htau) -which is the minimal active moiety of neurotoxic 20-22kDa peptide accumulating in vivo at AD synapses and secreted into parenchyma- acutely provokes presynaptic deficit in K+ -evoked glutamate release on hippocampal synaptosomes along with alteration in local Ca2+ dynamics. Neuritic dystrophy, microtubules breakdown, deregulation in presynaptic proteins and loss of mitochondria located at nerve endings are detected in hippocampal cultures only after prolonged exposure to NH 2 htau. The specificity of these biological effects is supported by the lack of any significant change, either on neuronal activity or on cellular integrity, shown by administration of its reverse sequence counterpart which behaves as an inactive control, likely due to a poor conformational flexibility which makes it unable to dynamically perturb biomembrane-like environments. Our results demonstrate that one of the AD-relevant, soluble and secreted N-terminally truncated tau forms can early contribute to pathology outside of neurons causing alterations in synaptic activity at presynaptic level, independently of overt neurodegeneration.

19.
Biogerontology ; 18(3): 301-319, 2017 06.
Article in English | MEDLINE | ID: mdl-28314935

ABSTRACT

After more than 80 years from the revolutionary discoveries of Otto Warburg, who observed high glucose dependency, with increased glycolysis and lactate production regardless of oxygen availability in most cancer cells, the 'Warburg effect' returns to the fore in neuronal cells affected by Alzheimer's disease (AD). Indeed, it seems that, in the mild phase of AD, neuronal cells "prefer" to use the energetically inefficient method of burning glucose by glycolysis, as in cancer, proving to become resistant to ß-amyloid (Aß)-dependent apoptosis. However, in the late phase, while most AD brain cells die in response to Aß toxicity, only small populations of neurons, exhibiting increased glucose uptake and glycolytic flux, are able to survive as they are resistant to Aß. Here we draw an overview on the metabolic shift for glucose utilization from oxidative phosphorylation to glycolysis, focusing on the hypothesis that, as extreme attempt to oppose the impending death, mitochondria-whose dysfunction and central role in Aß toxicity is an AD hallmark-are sent into quiescence, this likely contributing to activate mechanisms of resistance to Aß-dependent apoptosis. Finally, the attempt turns out fruitless since the loss of the adaptive advantage afforded by elevated aerobic glycolysis exacerbates the pathophysiological processes associated with AD, making the brain susceptible to Aß-induced neurotoxicity and leading to cell death and dementia. The understanding of how certain nerve cells become resistant to Aß toxicity, while the majority dies, is an attractive challenge toward the identification of novel possible targets for AD therapy.


Subject(s)
Alzheimer Disease/metabolism , Oxygen Consumption , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Apoptosis , Glucose/metabolism , Humans , Oxidative Phosphorylation
20.
J Bioenerg Biomembr ; 48(3): 197-210, 2016 06.
Article in English | MEDLINE | ID: mdl-27146408

ABSTRACT

Evidence supporting the occurrence of oxidative stress in Cystic Fibrosis (CF) is well established and the literature suggests that oxidative stress is inseparably linked to mitochondrial dysfunction. Here, we have characterized mitochondrial function, in particular as it regards the steps of oxidative phosphorylation and ROS production, in airway cells either homozygous for the F508del-CFTR allele or stably expressing wt-CFTR. We find that oxygen consumption, ΔΨ generation, adenine nucleotide translocator-dependent ADP/ATP exchange and both mitochondrial Complex I and IV activities are impaired in CF cells, while both mitochondrial ROS production and membrane lipid peroxidation increase. Importantly, treatment of CF cells with the small molecules VX-809 and 4,6,4'-trimethylangelicin, which act as "correctors" for F508del CFTR by rescuing the F508del CFTR-dependent chloride secretion, while having no effect per sè on mitochondrial function in wt-CFTR cells, significantly improved all the above mitochondrial parameters towards values found in the airway cells expressing wt-CFTR. This novel study on mitochondrial bioenergetics provides a springboard for future research to further understand the molecular mechanisms responsible for the involvement of mitochondria in CF and identify the proteins primarily responsible for the F508del-CFTR-dependent mitochondrial impairment and thus reveal potential novel targets for CF therapy.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Mitochondrial Diseases/physiopathology , Mutation , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Benzodioxoles/pharmacology , Benzodioxoles/therapeutic use , Cells, Cultured , Chlorides/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Energy Metabolism/drug effects , Energy Metabolism/genetics , Furocoumarins/pharmacology , Furocoumarins/therapeutic use , Humans , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/metabolism , Respiratory System/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...